

Metropolitan Water Reclamation District of Greater Chicago

- Independent government and taxing body
- Treatment of wastewater from 125 municipalities plus city of Chicago
- Collection is done by local municipalities
- Stormwater management for Cook County
- TARP system for pollution and flood control

Metropolitan Water Reclamation District of Greater Chicago

Real population served	5.25 million
Equivalent Commercial and Industrial population served	4.5 million
Combined Sewer Overflow Equivalent Population	o.6 million

MWRD Intercepting Sewers and Water Reclamation Plants

MWRD Water Reclamation Plants

Water Reclamation Plant	Design Capacity (MGD)	Design Capacity (M³/day)
Stickney	1,200	4,542,000
Calumet	354	1,340,000
O'Brien	333	1,260,000
Kirie	52	196,000
Egan	30	113,000
Hanover Park	12	45,000
Lemont	2.3	8,700

Schematic of MWRD Stickney WRP Treatment Process

Current Regulatory, Operational and Public Relations Challenges

Regulatory Requirements

- Disinfection
 - WRP effluents Fecal coliforms monthly geometric mean 200 CFU/mL
 - Combined sewer overflows
- Biosolids pathogen reduction Class A standards for beneficial reuse
 - Fecal coliform <1,000 MPN/g,
 - Helminth ova <1/4g,
 - Enteric virus <1 PFU/4g
- Nutrient removal & recovery

 Effluent P discharge limits
 - Current 1 mg/L total P
 - Future 0.5 mg/L total P

Current Regulatory, Operational and Public Challenges

Public Concerns

- Emerging Contaminants (EC) pharmaceutical and personal care products (PPCPs), endocrine disrupting compounds (EDCs) etc.
- Odor emissions within and outside of treatment plants

Operations

- Energy Neutrality
 - -- Decrease energy consumption
 - Increase biogas utilization
 - -- Increase biogas production
 - -- Biosolids to fuel

Sludge Liquor	Pre or Post Digested Sludge
Pearl ®	AirPrex®
Crystalactor®	NuReSys®
Multiform Harvest (MFH)	CalPrex™
Phospaq™	Quick Wash™
Phosnix®	ANPHOS®
Quick Wash™	Phosnix®
Struvia™	
NuReSys®	

Phosphorus Recovery

- Produce Struvite (Magnesium ammonium phosphate)
- Process removes 80-85% of the Phosphorus that enters the treatment plant
- Can generate up to 9,000 metric tons per year of product

Pearl®

Input Stream: Sludge Liquor

Type of Reactor: Fluidized Bed Reactor

Reagents: MgCl₂, NaOH

Influent Quality: >75 mg/L ortho-P

<1,000 mg/L SS

Product: Struvite Pellets

Recovered

Removal Efficiency: 80-90 % P

Ostara installation at Stickney WRP

Pearl® Reactor

Airprex

Input Stream: Digested Sludge

Type of Reactor: Airlift Reactor

Reagents: MgCl₂, Air

Influent Quality: >50 mg/L ortho-P

Product Recovered: Struvite

Removal Efficiency : >90 % P

Multiform™ Harvest

Input Stream: Digested Sludge

Type of Reactor: Upflow Reactor

Reagents: MgCl₂, NaOH

Product Recovered: Struvite

Removal Efficiency: 80-90 % P; 10- 40%

 NH_3-N

Multiform Harvest Reactor

Phospaq[™]

Input Stream: Sludge Liquor

Type of Reactor: Continuous Stired Tank

Reagents: MgO or MgCl₂, Air

Product Recovered: Struvite

Removal Efficiency : 80-90 % P; 10- 40%

 NH_3-N

Phospag Process

Conventional and Current Technologies Disinfection

Mature Technologies

Chlorination

Chloramination

Ozonation

Ultraviolet Irradiation

Practicable Tech.

Chlorine Dioxide

Peracetic Acid

Combination Tech.

Ultraviolet/Ozonation

Ultraviolet/Peracetic

Ultraviolet/Chlorination

Ultraviolet/Peroxide

Ozonation/Peroxide

Emerging/Innovative Technologies

Bromine chemicals

Ferrate

Gamma/Electron Beam

Membrane

Microwave Irradiation

Pasteurization

Pulse Ultraviolet

Quatanary Ammonium

Tin Oxide Anodes

TiO2/Photocatalysis

Ultrasonic Caviation

Zero Valent Iron

Conventional and Current Technologies Disinfection

Calumet WRP – Chlorination/Dechlorination

DAF: 354 mgd

Installed 2016

Disinfection season: March – Nov.

Chemical cost: ~\$12/ mil gal.

Conventional and Current Technologies Disinfection

O'Brien WRP – UV Disinfection

- DAF: 333 mgd
- Installed 2016
- Disinfection season: March Nov.
- Electricity: ~40 kwh/mil gal, ~ \$3/mil gal.
- 900 bulbs replacement: every 3 yrs, ~\$500,000/yr

- EC destruction processes
 - Ozone
 - Advanced oxidation processes (AOPs)
- EC removal (separation) processes
 - Membranes (e.g. RO, NF)
 - Activated carbon
- Advanced treatment can provide complete to near complete removal of most ECs, but at a high cost

Cost ranking of options for reducing ECs in effluent

High cost

- 1. Advanced treatment
 - Membranes, activated carbon
 - Ozone, advanced oxidation processes
- 2. Tertiary treatment
 - BNR
 - Sand filtration
- 3. Optimize conventional WWT
 - Increase SRT
- 4. Source control
 - (Effectiveness is uncertain)

Comparison of PPCP Removal efficiencies by different WWTP technologies

Oulton et al. 2010. Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. *Journal of Environmental Monitoring*. 12. 1956-1978.

O'Brien WRP – UV disinfection: Pharmaceuticals Pre and Post-Disinfection 2016-2017

Compound	Samples Detected [§]	Average Conc Pre-disinfection	entration (ng/L) Post-disinfection	Percent Change	
estrone (E1)	1	9 ± 2	9 ± 2	-6	
estradiol (E2)	1	2 ± 3	nd	-	
bupropion	15	120 ± 50	100 ± 40	-1	
carbamezipine	15	230 ± 150	170 ± 70	-29	
citalopram	15	130 ± 40	120 ± 40	-7	
duloxetine	10	12 ± 15	4 ± 3	-65	
fluoxetine	15	13 ± 17	20 ± 35	53	
norfluoxetine	7	3 ± 4	4 ± 6	66	
norsertraline	15	210 ± 140	180 ± 150	-6	
paroxetine	4	8 ± 1	2 ± 2	-68	
sertraline	16	60 ± 90	24 ± 16	-62	
venlafaxine	16	240± 440	160 ± 60	-37	

Data from Heiko Schoenfuss: NSF Study

Calumet WRP – Hypochlorite disinfection: Pharmaceuticals Pre and Post-Disinfection

Compound*	Samples Detected [§]	Average Conce Pre-disinfection		Percent Change
estrone (E1)	1	9 ± 1	8 ± 1	-12
estradiol (E2)	0	nd	nd	
bupropion	16	90 ± 100	60 ± 40	-30
carbamazepine	16	160 ± 50	150 ± 50	-1
citalopram	16	82 ± 70	29 ± 20	-64
duloxetine	16	3 ± 3	2 ± 2	-53
fluoxetine	16	320 ± 550	130 ± 140	-59
norfluoxetine	10	63 ± 68	18 ± 31	-71
norsertraline	16	270 ± 240	220 ± 180	-12
paroxetine	4	3 ± 1	2 ± 1	-17
sertraline	16	39 ± 65	13 ± 6	-66
venlafaxine	16	100 ± 40	67 ± 28	-33

Data from Heiko Schoenfuss: NSF Study

Conventional and Current Technologies Class A Biosolids

Biosolids Class A pathogen reduction

- USEPA Processes to further reduce pathogens (PFRP)
- Includes composting, heat drying, irradiation, pasteurization

MWRD – Lagoon-aging and air-drying (USEPA approved site-specific PFRP)

Conventional and Current Technologies Class A Biosolids

Heat Drying

Conventional and Current Technologies Class A Biosolids

Biosolids Composting at MWRD

1 part biosolids:3 parts wood chips ~23 day active composting followed by ~ 16 weeks curing

Opportunities for E-beam Treatment

- Sludge and biosolids Cell lysing
 - Energy recovery
 - Carbon for biological P removal
 - P release for recovery via Ostara
 - Pathogen reduction Class A biosolids
- Disinfection and
 - WRP Effluent
 - Combined sewer overflows
 - Reduce EC
- Odor Control
 - Odor emissions from WRP

Opportunities for E-beam Treatment Sludge and Biosolids

Location	n Description	Potential Benefits
A	Waste activated	 Improve dewatering of WAS
	sludge (WAS)	Solubilize P for recovery in centrate
В	Thickened WAS	 Solubilize P for recovery in centrate via Ostara
С	Digester feed	 Pathogen reduction – USEPA Part 503 Class A standard
		 Increase recovery of digester gas
		Solubilize P for recovery
D	Digester drawoff	 Pathogen reduction – USEPA Part 503 Class A standard
E	Centrifuge cake	Pathogen reduction – USEPA Part 503
		Class A standard

Opportunities for E-beam Treatment Sludge and Biosolids

Opportunities for E-beam Treatment Sludge and Biosolids

Centrifuges

Anaerobic digesters

Opportunities for E-beam Treatment Disinfection of Effluents & CSOs

Lemont Wet Weather Facility

O'Brien WRP UV Disinfection Facility

Opportunities for E-beam Treatment Disinfection of Effluents & CSOs

Combined Sewer Overflows (CSO) during wet-weather conditions
Disinfection requirement

Opportunities for E-beam Treatment Odor Control

Biofilter at Stickney WRP

